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PREFACE

During the past several years, rapid orbit generation techniques, based on a

first-order application of the generalized method of averaging, have been inves-
tigated for the National Aeronautics and Space Administration (NASA) Goddard
Space Flight Center (GSFC). This investigation has culminated in the develop-

ment of a hybrid averaged orbit generator which has been implemented in the

Research and Development (R&D) version of the Goddard Trajectory Determin-

ction System (GTDS).

In order to satisfy the requirements of different audiences and because of the

scope of this investigation, the results of the investiga*'on have been documented

in several parts. The primary documents are as follows:

A Recursively Formulated First-Order Semianalytic Artificial Satellite

Theory Based on the Generalized Method of Averaging., Volume I: The

Generalized Method of Averaging Applied to the Artificial Satellite Prob-

lem. Computer Sciences Corporation Report No. CSC/TR-77/6010,

Wayne D. McClain, Noember 1977,

{This document presents a discussion of the application of the generalized
method of averaging to the artificial satellite problem; the document is

specifically directed to the analyst. ]

A Recursively Formulated First-Order Sefnlanalvtic Artificial Satellite

Theory Based on the Generalized Method of Averaging. Volume II: The

Explicit Development of the First-Order Averaged Equations of Motion

for the Nonspherical Gravitational and Nonresonant Third-Body Pertur-

bations. (The present document.)

[This document presents the explicit development of the first-order aver-
aged equations of motion for the nonspherical gravitational and nonresonant
third-body perturbations. The document is directed to the analyst. ]

System Description and User's Guide for the GTDS R&D Averaged Orbit

Generator., Computer Sciences Corporation Report No. CSC/SD-78/6020,

Leo W. Early, June 1978.

[This document presents an overview of the averaged orbit generator, a
description of the software system, and instructions for program execu-
tion. The document is directed to a general audience consisting of analysts,

programmers, and data technicians. ]
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The Numerical Evaluation of the GTDS R&D Averaged Orbit Generator.
i Computer Sciences Corporation Report No. CSC/TM-78/6138, W. D.
' McClain and L. W. Early, September 1978 (in preparation).

[This document {is directed primarily to the analyst and user.]

o= o =

Status Report on Numerical Averaging Methods, Computer Sciences Cor-
poration Report No. CSC/TM-75/6039, Anne C. Long, September 1975

o

[This document presents a discussion of the numerical averaging capabil-

ity in the GTDS R&D hybrid averaged orbit generator (parts of this docu- (
ment are superseded by the report CSC/SD-78/6020 described above). d
i The document is directed primarily to the analyst.]

] Development and Evaluation of Numerical Quadrature Procedures for Use U
' in Numerically Averaged Variation-of-Parameters Orbit Generators.

i Computer Sciences Corporation Report No. CSC/TM-75/6038, Leo W, )
s Early, July 1975. LJ
i [This document is also directed primarily to the analyst. }

H
it

Earlier documents reporting preliminary results for both analytical and numer-

ical averaging techniques are referenced in the above documents.
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ABSTRACT

This report presents, in two volumes, a recursively formulated, first-order,
semianalytic artificial satellite theory, based on the generalized method of
averaging. Volume I, which has been produced under a separate cover, dis-
cusses the theory of the generalized method of averaging applied to the artificial

satellite problem.

The present volume, Volume II, presents a general first-order theory for the
accurate computation of the long-period and secular motion of a satellite caused
by the nonspherical gravitational field of the centra! body. Also, the develop~
ment of the first-order averaged third-bcdy disturbing function is presented,
and the theory for the accurate computation of the long-period and secular
motion for the special case of low=-altitude nonresonant satellites is completed.
Recursive algorithms are provided for efficient evaluation of the theory. In
addition, several mathematical developments necessary for the construction

of the first-order theory are presented. Also, sufficient information has been
provided to construct the analytical formulation of the first-order short-period

variations.

This theory has been implemented in the Research and Development (R&D) version
of the Goddard Trajectory Determination System (GTDS), a large orbit determi-
nation system primarily devoted to research and development efforts supported

Yy the Goddard Space Flight Center (GSFC).
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SECTION 1 - INTRODUCTION

The prediction and definitive determination of artificial satellite orbits is one

of the more computationally expensive dvnamical problems today. Maintaining
accurate ephemerides for the ever-increasing number of artificial satellites
(which include active scientific, defense, communication, and weather satellites
as well as defunct satellites, launch vehicles, and other debris) requires a con-
siderable expenditure in terms of computing time. Prelaunch mission analysis
requires that several hundred satellite trajectories over periods of up to several

vears be generated for the purposes of lifetime and geometry constraint analysis.

Generally, these applications fall into two categories: those applications which
require high accuracy, e.g., definitive orbit determination, and the low-to-
moderate accuracy applications referred to under the broad category of mission
analysis. The highest accuracy requirements are obtained through the extremely
accurate high-precision orbit generation techniques which rely on the ¢« xpensive
process of numerical integration of Newton's equations of motion or some equiv-
alent set of differential equations., Applications with less stringent accuracy
requirements are often treated with analytical approximations. Mission analysis
applications are often treated with analytical approximations and, in many cases,

even two-body mechanics {8 used.

The analvtical approach to the artifictal satellite problem vields a set of analvti-
cal formulas for the coordinates or orbital elements which are usually obtained

to first or second order in a small parameter. The approach is to separate the
shor<-period, long-period, and secular components of the motion through a series
of canonical transformations (Reference 1). The secular contributions to the
motion are evaluated at a given time, and the canonical transformation used to
remove the long-period component of motion i{s inverted to provide the long-
period motion in terms of the secular elements, Finally, the transformation

to remove the short-period terms {s inverted and evaluated with the secular and

1-1
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long-period contributions to the elements, thus obtaining the short-period con-
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tributions to the mntion.

1

Generally, existing analytical satellite theories™ have severely restricted per-

— _S.
o ——— «

turbation models. In addition, these analytical satellite theories are not very

flexible with respect to the extension of the force model. This is partially ]

.

because an analytical satellite theory has not been formulated for completely Lo

general central-body and third-bodyv perturbation models.2 More importantly, 1

. Ly 4
o e e e

the fundamental problem of developing an accurate and flexible analytical drag -
theory remains unsolved. Consequently, as knowledge of the physical environ- '

ment (e.g., atmospheric density, geopotential coefficients of high order and

degree) and accuracy requirements increase, the current analvtical theories
cannot be expected to keep pace. If the more costly high-precision methods are

to be avoided and the increased accuracy requirements are to be n.et, either

more generally formulated analytical theories must be developed, including a

Y. . SN

much more satisfactory treatment of analvtical drag, or an alternate approach

-

must be found.

The method of averaging offers a very promising alternative approach for the B {

artificial satellite problem. This approach sharcs similarities with both the ,

numerical high-precision and the pure analytical methods and is classified as

a semianalytical method. In essence, this method provides the long-period
and secular motion of the satellite very efficiently through the numerical inte- ..

gration of the averaged equations of motion. In addition, the theory provides

t
b 5
: L
| IY. Hagihara (Reference 2) gives an extensive list of rererences to the work in e
artificial satellite theory. i

9

“Small (Reference 3) has developed a first-order .nalytical theory for an arbi- P
trary number of zonal harmonic terms, and Mueller (Reference 4), using the
Poincare-Von Zeipel technique, has developed a first-order analyvtical theory '
for the secular and long-period motion due to an arbitrary number of zonal
harmonic terms. Recurrence relations are used in the evaluation of both
theories.

-
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ror short-period variations in the osculating elements (Reference 5) which are

required for high-accuracy applications.l

The method of averaging approuch is particularly flexible, especially with re-
spect to the atmospheric drag models. Not only a. e the complex drag models
which are used in high-precision theories easily accommodated, but they are
also easily interchanged without any impact on the theory (Reference G); Gen-
eral models for the central body, nonspherical gravitational, and third-body
perturbations can be developed in . straightforward manner, which is the sub-

ject of this volume.

A combination of numerical evaluation and theoretical considerations indicates
that the method of averaging approach is generally two to three orders of mag-
nitude more efficient than the high-precision tec'hniques.2 Specifically, it has
been shown in .{eferences 6 and 7 that a first-order application of the method
of averagi.g to the artificial satellite problem produces the long=-period and

secular motion very accurately and with the computational efficiency cited above.

Thus, the method of averaging provides a low-cost, long-term orbit prediction

capability useful for the following applications:
) Mission analysis (lifetime and geometric constraints)
® Tracking station acquisition schedules

° Dynamic modeling required for differential correction (DC} pro-
cedures used to solve for dvnamical parameters, e.g., high-order

geopotential coefficients

1This i{s equivalent to inverting the first canoncial transformation in the analyti-
cal satellite theory to obtain first-order short-period variations in the osculat-
ing elements, which are then superimposed on the secular and long-period
elements. See Section 4 of Reference 5 for more details.

f)
“For very strongly drag perturbed satellites, the increase in efficiency may be
reduced to between one and two orders of magnitude,

1-3
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The effectiveness of representing the osbuluting clements by superimposing first-
order short-peviod varintions on the menn elements has been demonstrated by
Lutzky and Upholt (Reference 8).  Also, it can be shown both from the discussion
{n Volume 1 of this report (Reference 3) and in the present volume and from the
discussion in Reference 9 that the first-order short-period vartdtions can be for-
mulated analytically. It appears that the cost of the evaluation of these analytical
formulas s quite feasible and would be roughly equivalent to a single evaluation
of the mean element rates which are numerically integrated to obtain the long-

period and secular motion. However, the cost of evaluating these short-period

| SEa

variations at several points in a single orbital revolution would be considerubly

less than the cost of evaluating the same number of mean element rates.! Con-

P
B et

sequently, it appears that this high-accuracy mode ot the method of averaging

couli prove to be signilicantly more etficient than the usual high-preciston tech-

<
bt

niques and, thus, may otfer an efficient high-precision orbit prediction capability

for definitive orbit detormination procedures, particularly where extended data

==

{ntervals with data gups are encountered,  In addition, the short-period variativas
[ ]
can and should be used to develop an osculating-to-mean element conversion cap-

abtlity.,

LS i fm M &9 L2

1.

Within the same revolution or "pass,” the slowly varving mean elements ave
casentially constant,  Only those tunctions which dopend explicitly on the tast
varfable need to be veevaluated,

| S
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1.1 OVERVIEW OF THE METHOD OF AVERAGING

The efficiency of the method of averaging procedure arises from the fact that
the maximum step size which can be used {n the numerical integration of a set
of differential equations is constrained by the highest significant frequency (.e.,
shortest period) contained therein. The method of averaging is used to remove
high-frequency components from the equations of motion. The resulting aver-
aged equations of motion are integrated numerically but with a significantly
greater step size than can be used with the high-precision equations. The long-
period and secular components of the satellite motion are thus obtained. The
short-period component of the motion can be computed either numerically (Ref-
erence 8) or from analytical formulas which can be constructed from the results
contained in Reference 5 and Sections 3 and + of the present document, These
formulas are also developed in Reference 9. In most cases, the computational
savings achieved by the larger step size (which results in fewer force evalua-
tions) far outweighs the possible additional cost of the uerivative evaluntion.1

thereby effecting a significant décrease in the overall computational costs.

The technique of removing the high-frequency terms from the equations of motion
was first used by Lagrange in his {nvestigations of the planetary motion. In the
particular formulation of the equations of motion developed by Lagrange, the
high-frequency terms, in the case of conservative perturbing forces, could be
isolated more or less by inspection, However, a rigorous mathematical foun-
dation for this technique was not provided until the relatively recent work by
Krylov and Bogoliubov (Reference 10) on asyvmptotic methods for nonlinear

oscillations,

Two approaches are available for the application of the method of averaging.

The high-frequency components of the equations of motion can be removed

1'I‘he exact cost of a derivative evaluation depends on the specific perturbations
and the characteristics of the satellite orbit, which may permit significant
truncation of the series expansions.
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numerically by application of a quadrature around an appropriate formulation

of the high-precision equations of motion. This procedure is known as the
numerical averaging approach. If the perturbing forces are conservative, the
equations of motion can be expressed using Lagrange's formulation (Reference 5),
and the averaging quadrature can be performed analytically. Under certain
assumptions,l this method produces the same result as that obtained by inspec-
tion, This semianalytical procedure of numerically integrating the analytically

averaged equations of motion is referred to as the analytical averaging approach.

1'I'he assumptions arise when either the Greenwich Hour Angle (l.e., the Earth's
rotation) or the fast variable of the disturbing third body appear in the perturba-
tion models. Specifically, these quantities are assumed to be completely inde-
pendent of the satellite fast variable, both expiicitly and implicitly through the
time,
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1.2 RECENT DEVELOPMENTS IN ANALYTICAL AVERAGING THEORY

Recently, several authors have investigated general, analytically averaged
perturbation models for the third-body and nonspherical gravitational perturba-
tions in terms or nonsingular element sets. Cefola and Broucke (Reference 11)
developed recursively formulated models for the nonresonant third-body and
zonal harmonic perturbations based on the nonsingular equinoctial elements.
The development of the zonal harmonic model {s similar to that of Cook (Ref-
erence 12), with the exception that the inclination function is developed in terms
of associated Legendre polynomials and their derivatives and certain complex
polynomials. Cefola's third-body model is ceveloped in terms of the direction
cosines of the disturbing third-body position vector, which proves computation-
ally efficient but is limited to nonresonant cases. Cefola outlined an extension
of his zonal harmonic model to include the nonresonant tesseral harmonic terms
(Reference 13) and later completed and extended the model to include resonant
phenomena (Reference 14). Glacaglia (Reference 15) reformulated Kaula's
(References 16 and 17) perturbation’ models (using Allan's inclination function)
ina norisingular element set and provided a set of recursive algorithms for
computational purposes. Finally, Nacozy and Dallas (Reference 18) also
reformulated the Kaula geopotential model (using Allan's inclination function)

in terms of a nonsingular element set. No recursive algorithms were provided.
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1.3 SUMMARY

This report is the result of a series of task assignments with the objective of

imp’- menting in the Research and Development (R&D) version of the Goddard

--).:.‘—-l +~W

Trajectory Determination System (GTDS) a set of recursively evaluated, first-
order analytically averaged equations of motion for an artificial satellite per-

o turbed by nonresonant third-body and nonspherical gravitational perturbations.
This analtyical.averaging capability enhances the GTDS numerical averaging
capability (Reference 6) and provides for optimal averaged perturbation models
for each specific type of perturbation (with the exception of third-body resonance

cases, which were not considered). Partial results obtained for some of the

% LT

otpimal averaged perturbation models in GTDS have been presented in Refer-

ence 7.

-

For implementation, Cefola's averaged perturbation models (Reference 11) for

the nonresonant third-body and zonal harmonic perturbations are adopted. The

e

nonresonant tesseral harmonic model was developed as part of this task assign-
ment using the approach outlined by Cefola in Reference 13. The resonant
tesseral harmonics model was also developed as part of the task assignment
from a completely general nonspherical gravitational theory designed to yield
the zonal harmonics, nonresonant tesseral harmonics, and resonant tesseral
harmonics models as special cases. In addition, all models were generalized
to handle retrograde as well as direct equinoctial elements (see Appendix A of

Reference 3).

The brute-force tmplementation of recursive algorithms can contribute to com-
putational inefficiency and can possibly introduce artificial singularities (not in
y . the equations of motion, but in the model evaluation). To {nsure against this
possibility, careful consideration was given to the ordering of the terms in the
models, such that the recurrence formulas proceed in the proper direction to
avoid sinall divisors. Also, the amount of recomputation and storage require-

ments are minimized.
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For implementation in the GTDS R&D syvstem, it was felt that the resonant tes-
seral harmonic model should be very flexible with respect to the specific reso-
nant harmonic terms used. The existence of a resonance dictates which terms
in the potential expansion are significant to the long-period motion. Knowledge
of the common characteristics of these terms and the proper use of the recur-
sive algorithms could have provided a means for further optimization of this
model. However, the procedure would have been automatic, with the program
expecting a certain set of terms. Therefore, for the purposes of flexibility and
at some additional comp. tational costs, the contributions from each spherical

harmonic term are computed entirely independently of all other terms.1

Due to the extensive new software for the analvtical averaging capability, as
well as to the extensive modifications required to the previously implemented
averaging software (particularly the input processor and {nitialization procedures
and the attendant added complexity of executing the GTDS R&D averaging capabil-
ity), it was decided that a system description and user's guide for the GTDS

R&D averaging capability would be i{ssued under a separate cover (Reference 19).
In addition, a document extending the numerical results bevond those presented
in Reference 7 is also in preparation. This document (Reference 20) will

discuss the computational costs tn terms of machine processing time, the ac-
curacy of the analytical averaging methods, and the procedure and algorithms
used to develop an automatic truncation capability to further optimize the per-

turbation models for each particular case.

The present report consists of two volumes. Volume I (Reference 5) presents

a comprehensive discussion of the application of the generalized method of aver-
aging to the artifictal satellite problem aund the resulting formulation of the
averaged equations of motion. Included tn the discussion are the formulation

of the Variation of Parameters (VOD) equations of motion and the application

1'I‘he capabtlity to automatically select the resonant terms was implemented {n the
GTDS R&D version. However, no spectal relatiouship among them ts assumed.

1-9

PR WA <ot 3 L3




[RRESEECECEL ELLLLLLEEEL L

of the method of averaging to the VOP equations of motion, Other topics dis-
cussed include the criteria for the selection of short-period terms, the applica-
tion of the method of averaging to the case of two or more perturbing functions,
the application of the method of averaging to cases involving resonance phenom-
ena, and a discussion of the first-order short-period variations in the osculating

elements and their application to osculating-to~mean and mean-to-osculating

element conversions,

Volume II ¢the present document) presents the mathematical formulation, in
nonsingular equinoctial elements, of the nonspherical gravitational and non-
resonant third-body disturbing functions required for the first-order averaged
equations of motion. Section 2 of this document presents some mathematical
developments required for the expansion of the disturbing functions. Specifically,
Section 2.1 discusses the theory of the rotaticn of spherical harmonic functions.
Next, Section 2,2 develops certain Fourier series expansions which are of im-

portance in the development of the disturbing functions.

Section 3 presents the explicit theory for the nonspherical gravitational pertur-
bation. The development of the nonspherical gravitational disturbing function

is discussed in Section 3.1, and the disturbing function is expressed in equinoc=
tial elements in Section 3.2. Also, a discusslon. relating Kaula's inclination
function (References 16 and 17) to the tnclination function developed in this
report i{s presented. The nonspherical gravitational disturbing function is aver-
aged in Section 3.3. The averaging operation and the concepts and implications
of time-dependent and time~independent averaging are discussed. Ia addition,
the averaged disturbing functions for the special cases of the zonal harmonics,
combined zonal and nonresonant tesseral harmonics, and resonant tesseral
harmonics are isolated and presented. In Section 3.4, the partial derivatives
of the nonspherical gravitational disturbing function which are required for the
averaged equations of motion are presented for each case, and the recurrence

relations used for the evaluation of the constituent functions are given.

1-10
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Section 4 of the present volume presents the explicit theory for the disturbing
third-body perturbation. Section 4.1 discusses the development of the third-
body disturbing function, and Section 4.2 gives the general expansion of the
disturbing function, Due to time and other resource counstraints, only an outline

of the general development is presented. However, because of the similarities

with the nonspherical gravitational theory presented {n Section 3, the neglected '
details are straightforward. Section {.3 presents another expansion of the } 1{ _‘
third-body disturbing function which is well suited for cases of nonresonant “ éf
(with the third body) near-Earth satellites, Section 4.4 presents the partial ‘ h
derivatives of the averaged disturbing function developed in Section 4.3 which .
are required for the averaged equations of motion in the special case. The ‘ ' *.

necessary recurrence relations for evaluation of the theory are also provided. R

The equations of motion for all models are given in what is considered to be an
optimal form, taking into account the minimization of the combined computa~
tiona! and storage costs while avoiding computational singularities. [t is this
final form of the models that was implemented in the GTDS R&D system. These o
motdels reflect, to some extent, the computer environment in which they were ‘ -
implemented, {.e., the GSFC IBM 8,360-95 computer. A variable can assume
a moderately wide range of magnitudes in this environment. This, of course,

i{s not true in all computer environments. Thus, for implementation on other

computers, {t may be necessary to tntroduce normaltzation factors and to other- ? ot )
Y
wise redefine certain functions appearing in the models given tn Sections 3 and 5

4 in order to minimize the magnitude differences between quantities.

-
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1.4 CONCLUSIONS

Most satellite theories based on an averaging coucept, e.g., Celola's (Refer-
cuce 14), Glacaglia's (Reference 13), and Kaula's (References 16 and 17), have
been formulated using the classical assumptions of a time-independent pevtur-
hation model1 or of exact resonance, While these classical assumptions guar-
antee "“o vemovuil of the unwanted short-period contributions to the motion,

they may, in some cases, produce a significant exaggeration of certatn medium-
cnd long-period contributions to the motion. This fact should be cousidered in

the implementation of an averaging theory.

The zonal, nonresonant tesseral, and resonant tesseral harmonic models,
which are presented in Section 3 of this volume and which have been tmplemented
{n the GTDS R&D system, comprise a completely general first-order theory tov
the contributions to the long-period and secular motion caused by the central-
body nonspherical gravitatiounal field. However, as discussed {n Section 3,1 of
Reference 3, it is recommended that the effects countributed by the nonresonant
tesseral harmontes be oxcluded from the averaged equations of motion, since
they unnecessartly restrict the integration step stze and since they can be for-
mulated analytically {n the same way as the first-order short-pertod variations
in the osculating elements. In addition, the analytical formulas for the first-
order short-period variations {n the osculating clements can, (o essence, be
developed from the {nformation contained in both volumes of this report. Ia
order to obtain the final formulas, it is only necessary to extract the appropri-
ate formulas from Sections 2,2, 3, and 4 of the present volume and suhstitute

them {nto Equations (4-14) of Section 4 in Volume 1.

Numerical evaluation of the nouspherical gravitational theorties for long=period

and secular motion, performed as part of the investigation and documented tn

1See Section 3.3 for more details,
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References 7 and 20, indicates that the theory is very efficient and accurate for
all cases considered, except resonant effects on large~-eccentricity orbits, The
proper treatment of the eccentricity expansions (Hansen coefficients) in these
cases still remains an open question. For the present, the numerical averaging
method, with a properly reduced force model, proviges an acceptable alternative
for cases of deep resonance. However, the effects of the high ecceatricities are

observed through higher order quadrature algorithms.

Although the geuneral third-body disturbing function is developed in Section 4,2
of the present volume, only the special case discussed tn Section 4.3 was im-
plemented in the GTDS R&D system., This implementation is restricted to those
applications involving low to moderate altitude satellites that are not in reso-
nance with the disturbing third bodv. For Earth satellites, these requirements
trauslate into satellites with periods less than 3 to 4 days and which are not in

resonance with the Moon,

The numerical evaluation of this capability (References 7 and 20) indicates that
it produces the long=-period and secular raotion of nonresonant satellites of low
to moderate altitude very accurately und efficiently. This theory s combletely
inadequate for Earth satellites with pericds longer than 4 days. Also, the
expense of numerically averaging such cases is completely unacceptable since
it is at least as expeunsive, and usually more expensive, than high-precision

techuiques.

The application of averaging methods to satellites with longer periods requires
a double-averaged (nonresonant cases) third-body theory or a single-averaged
third-body resonance theory, depending on the orbital characteristics ot the
satellite. It also seems feasible for such theories that first-ordar short-period
variations in the osculating elemeants can be aaalytically formulated to meet

high-precision requirements.
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SECTION 2 - MATHEMATICAL PRELIMINARIES

The explicit development in equinoctial elements of the nonspherical gravitational
and third-body disturbing functions requires the mathematical formulation for the
rotation of the spherical harmonic functions. In addition, Fourier series repre-
sentations are required for functions of the form

(r " [ eos st |

E) | sin 8L}

where r is the radial distance of the satellite, 4 is the semimajor axis of the
osculating orbit, L is the true longitude of the satellite which describes the sat-
ellite position in the orbit relative to the origin of the longitudes, and s is an

integer.

This section presents a general discussion of the rotation of the spherical har-
monic functions and develops the Fourier expansions, in the true, eccentric, and

mean longitudes, of the functions

) st
o
where
yst : .
¢ =2 exp(jsL) = cossl « jsinsl
The results of this section are applied in Sections 3 and 4 to obtain the disturbing

functions and averaged equations of motion for the nouspherical gravitational and

third-body perturbations, respectively.
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2,1 ROTATION OF THE SPHERICAL HARMONIC FUNCTIONS

A spherlqal harmonic function takes the form

Lol

l .1.4 le(sﬁ'“é)(cgmmswv\ * 5J.m sin m,\) (2-1)
r ' ' »

where (r, A, @) are the spherical coordinates of a given point, i.e., the satellite
position, and P" m &) 18 the associated Legendre polynomial of degree 4 and
order m and {s defined to be (see Section 3. 1 for more details)

W\Ia 1 dlﬂﬂ

alll datwm

L
Py mix) = (1-x3) (x3-1)" (-1sxs51) @2-2)

The quantities C 4Lm and S 3.m € referred to as the spherical harmonic coef-
’

ficients and are usually empirically determined constants,

A complex variable representation of the spherical harmonic function is useful for

the purposes of this discussion and Equation (2-1) is expressed in the form

pt
Re [ { r'L‘} (C‘.m - S“m) P‘.m(s'mﬂ exp (3m.\) ] (2-3)

where Re designates the real part and j is the ‘maginary unit, {.e.,
j= VT

Often, it is necessary to transform the above expression to a different reference

system in order to obtain an expression in terms of the transformed coordinates.
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Most generallv, such a transformation involves a t:ranslation and rotation of the

coordihate reference s‘\'stem.1 If, however, the two coordinate reference systems
possess a common origin, the transformation reduces to only a rotation and the
spherical harmonic function is to be expressed in the trunsformed latitude and
longitude (¢', A"). Since the radial distance, r, is invarfant under a rotaion

and since the spherical harmonic coefficients are independent of the position, it

i{s sufficient to rotate ounly the surface harmonic function

Pl.,m( sind) exp (jmA) @-4)

In this section, a discussioun of the mathematical formulatior ¢ a general rotation

i{s presented. Specifically, the Euler angle and Euler parameter representations

of a rotation are presented. Next, the rotation of a surtace harmonic is discussed.

Particular attention is devoted to the development of the generalized tnclination

function in terms of orthogonal polynomials.

2.1,1 Mathematical Representation of a General Rotation

Since a general rotation of a coordinate reference system icaves the origin invar=
fant, only three {naependent parameters are required to describe the rotatfon.

It follows that these three independeat parameters specify the relative orieutation
ol two coordinate reference §3'stems with a common origin. The three parame-
ters most frequently closen are the Euler angles 0SQ <27, 0SwW< 27, and

0<ism7 shown in Figure 1.
2.1, 1.1 The Euler Angle Representation

The primed coordinate system tn Figure 1 cun be obtained by performing three
simple rotations of the unprimed system. Specifically, the first rotation is per-

formed about the unprimed z axis through the angle 1. The second rotation is

llee (Reference 21) discusses the effects on the spherical harmonic furctions

caused by this more general transformation., Also, see Aardoom (Referoence 22).
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Figure 2-1. Euler Angles

performed about the new x axis through the angle i1, thus rotating the xy plane

into the x'y' plane. Fic~lly, the third rotation is performed about the z' axis
through the angle w. The general rotation is then expressed as a composite of

the three simple rotations, i.e.,

A= R,y(w) R () Ry(Q2) (2-5)
where
R,(6) = | 0 cose sing 2-6)
0 -sin® cos®
and ;

0ws® snd O
Ry(8) = | -sne cos8 O 2-1)
0 0 1
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are the matrix representations of rotations about the x and z axes, respectively.

The product of the three rotation matrices in Equation (£-5) yields the following

general rotation matrix:

A s

where

c'ucn. - C-.San_
~S@ c“ - C‘Qus‘\
S Sa

ey =

CuSa + G Sula
- SuSq + ¢ CCy
-9 cg_

cos K

S, * sinx

SN

Si

cusi
¢

(2-8)

This transformation matrix is used to transform the coordinates of the position

vector in the unprimed reference system to the coordinates in the primed refer-

ence system through the equation

The inverse transformation

is easily obtained since the transformation is orthogonal, i.e.,

oo 0

-m (W

r

)

Z O34

isd

wln - A'l -}

P

Qi = 83k

M DR IR R
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(2-10)
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b
:
| -1 T
a A = A (2-13)
-
L where
! T ]
!
: i is the transpose of the A matrix obtained by interchanging the rows and columas
: ; of the matrix (Reference 23).
]
1 2.1, 1.2 The Euler Parameter Representation

mgpr——

-

;w_ 3';" : -

be expressed as

- a
Si/aCaw* Cisa Cau

& A
A= ) CV-\ Camn* Sia Caww

I S:i Sna

Making the substitutions

PP
>

Other representations of the transformation matrix exist.

For example, by

’ using elementary trigonometric identities, it is easily shown that matrix A can

'\ A 7
S’«ia S.ﬂ.—m * ci/& Sﬂ.w.\ Susi
a .
-Salaw* Galaw &S (2-15)
-5 Cq ¢
-
N-w
= = 2-162)
Qe
2 a (2‘16b)
26
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1.
]
iy
h Q A
i o
Y ! ¢, = Cp- s
o+ b
{
dd Sax= aS&CK

SR
=

[
P

vields the matrix expression

g, ~ S -
T B W T s T e e

w
. B
u -t th  1qu8 ~ 4a94)
' ‘1 A= “‘Ma‘ 2184) “%a;*‘%i-q:v%:
, (s
L 24133+ 4280) Q493 4184)
! ; “J where
E ! U q," S.Cq = sm—;- 08
q, = S-CSG. = s'm-i sin
P
a C S = -i- \
11 il 3™ “v3% = w@s7 sin
' Q4 ® CxCp = cosi—l o9

o
l\l
)
~1

4(q,9,- ‘iﬂq)
a(q,9, “‘h?«)

'fﬁ-%iw?»qu

(2-16¢)

(2-17a)

(2-17b)

(2-18)

{2-192)

(2-19b)

(2-19¢)

(2-19d)
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where the quaternion q is a hypercomplex variable defined to be

Q= Qa* Q. *qai +qsk

~nd where

¥ s xi+3§+zk

= =gt =X
]kx-kk=.|

K= =ik o= )

Equation (2-20) should be taken onlyr as a convenient algorithm and does not tmply

that the quaternion is the rotational operator (Reference 24).
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are the well-known Euler parameters (Reference 24).
The Euler parameters are frequently used in the quaternion representation for
the transformed coordinates, i.e.,
T e q ¥ ab"‘ (2-20)

o=

e

&
LY

§ ot
[ NS,

L= = am w

PR,

-

—~i g




o - U
——. | S

— -

c-—

-~
1

—_

R e ' I -

2.1.2 Rotation of a Surface Harmonic Function

Essentially, there are two approaches to the rotation of the surface harmonic func-

tion

imA
PL L3N @) el” (2-21)

One approach relies on the brute-force substitution of the transformed coordinates

using the expressions1

Jlw-wa) A ~flw-mla) -jA
e’ 4+ e e

sing = -1& S, [e. ] cos @' ¢, simﬁ' (2~-22)

. , a . . Y a ‘(A RYU
c°$¢ CJ'\ a  (0S d [C\ll Cl(n ‘J) QJA * s”&e‘(n “’) G‘ ]
(2~23)
- ma
+S; e! )sin 9

into Equations (2-21). Equations (2-22) and (2-23) are obtained from Equations
(2-10), (2-13), and.(2-8) or (2-13). This approach can vield complicated expres-

sions which may obscure the real nature of the transformation.

The second approach, based on the work of G. Herglotz and . Magnus (Refer-
ence 25) {s to rotate the entire expression for the surface harmonic instead of
direct substitution of the rotated position components. Since the derivation of
the theory is quite lengthy and since it is provided in Reference 25 and also by

Lee (Reference 21), it will not be presented here.

1In real variables, Equation (2-22) takes on the more familiar form
sind « sini sin(A'vw) cos g’ + cosi sing'

The real and imaginary parts of Equation (2-23) also assume a familiar form,
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The rotation of a surfcoe harmonic function of (A, ) to a reference system with
the corresponding coordinates ()', ¢ takes the form

L . ¢
- jmA (2-8)! ™3 s
P.t,m(s'"¢) e 2 Z m Su (p,0,7T) F"g.s(sm¢)e. 2-24)
S:-4

where the associated Legendre polynomial of negative order is defined in terms

of the corresponding polynomial of positivie order by the relation

-n)!
P.l _n(x) = (-1)" ((::._:;‘ Pi‘n(X) (n20) (2-25)

~

The function b?}" s(p, o, T) is discussed next,
2.1.2,1 Development of the Function S;:' s( p»T,T)

The function Sf}_’ S(P,O', T) is defined to be

m,s

S, (p,oT) = e b ( o'--?-)-(m s) ]2 Um‘s(‘r) (2-26)
aL AT, T “pIJ m")( FY 3P ’ at -

where

N s e
o Emyer e Pt teset,1emes; €3)  (for mes SOV (2-270)
X )
Uy, (2) =

des s 3
(0 (i":) C. S.,m F(s-t, Lesel, Lemes; ci) (for m+s20) (2-27b)

and corresponds, in part, to the inclination function in References 16 and 17,
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The parameters 0, 0, T describe the orientation of the unprimed or original

coordinate reference svstem relative to the primed or transformed reference

svstem. The corresponding transformation from the primed refcrence system

to the unprimed reference system is given by Equation (2-9) if the symbols T
and T' are interchanged. The parameters P T and T are defined in terms
of the Euler angles through Equation (2-16).1 Otherwise, the transformation
given in Equation (2-10) is used and the Euler angles of the inverse transforma-

tion (1, {', W"') are required to determine L 0, and T through Equations (2-16).

The notation F(a, b, ¢, X) in Equations (2-27) designates the well-known hyper-

geometric series defined by (Reference 26)

(), (b), "

(Qn  n! @-28)

Fla,b,e,x) =

nal

where Pochhammer's symbol, @)y is defined by

(a), = alarl)(a+2) (a+n-1) (2-29)

Clearly, if a is a nonnegative integer, then Equation (2-29) can be expressed

using the well-known Gamma Function as

r‘(o.m)
M)

(o), = (2-30)

1'I‘he resulting definition of ¢ differs from that found in Courant and Hilbert
(Reference 25) by m/2, i.e.,

g -

S E

Toqn ®

In addition, Equation (2-26) is a modification of the corresponding equation in
Reference 25 in order to account for the change in the definition of ¢ .

2-11
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For negative integers a, Equation (2-29) can be expressed as

n (-a)!

(0, = -1 PRy

2-31)

Ultimately, a set of recursive algorithms is desired for evaluating the function
S;;" s( P, T). Gauss' contiguous relations for the hypergeometric series
(Reference 26) could be used as a basis for these recurrence relations; however,
they are not well suited for the purposes of this investigation. This is discussed
in Sect'ion 2.2. 1. 4.

Inspection of Equations (2-28) and (2-29) indicates that if either of the first two
arguments is a negative integer, the hypergeometric series terminates in a
polynomial. These polynomials are the orthogonal polynomials named after
Jacobi, and they possess some very useful recurrence relations (as will be

shown in Section 3).
2.1.2.2 Jacobi Polvnomial Representation of the Function Szn;" s( £, T)

Inspection of Equations (2-27) indicates that the hypergeometric series termi-
nates to yield a polynomial of degree £ - [s|. The relationship between the

hypergeometric series and the Jacobi polynomial taken from Reference 26 is

nlal ab
Fl-n, asbanet arl; ) = o P (1-2) (2-32)
where the Jacobi polynomial takes the form
o n
Q, - a b n-m )
P () = 2" Z (“;\ )(Qfm)(x-x) (x+1) (2-33)

ms0
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or, equivalently,

n

n

a,b Tla+n+i) Z ny T{arbeviemey) m

P (x) = (x-1)
g n! T‘(o.«-bmu) m:O(M) lm P(Q.vm*t) X

(2-34)

In principle, the indexes a, b can assume any value with the exception of nega-

tive integers, i.e.,

o¥-n; b#-m

2-35)

However, for this investigation, only nonnegative integer values are considered.

Applyring Equation (2-32) to the hypergeometric series in Equations (2-27) and

noting that
4
L- QC‘r 2 - c;-c
vields
(Les)|mes]! -m-s,ms
F(‘I‘S, 1‘5*-1, L1-m-s; c%) 2 2 | Pbs) (-Cat)

(L4-m)!

for m +s<0 and

(2-5)! (mes)! p s, am (- Car)

F(s-l, Leset, lemes, C%) * (Lem)! d-s

for m +820,
ORIGINAL PAGE IS
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t i
) Care must be taken to insure that the Jacobi polynomial is valid over the entire .

';'“ range of validity for the hypergeometric series. Since only integer values of m [

1> and s are of concern, Equations (2-35) can be expressed as “

" ) a20; b20

j.‘ For Equation (2-36), the constraints on the Jacobi polynomial are [l

o “m-$ 20; m-s20 u

which are simultaneously satisfied only by those values of s where s<-m.

Hence, the Jacobi polynomial and hypergeometric series in Equation (2-36) are

valid over the same range, i.e., m+s 0. The constraints on the Jacobi poly- [

N 21

nomial in Equation (2-37) are

m+s 20; S-m 20 !

£ e

which are simultaneously satisfied only for s2m. Thus, while the hypergeo-

| -

R metric series is valid for m +s20 or s> -m, the Jacobi polynomial is valid

only for s> m.

A valid Jacobi polynomial representation for Equation (2-37) over the range

-m £ s<m is obtained through a linear transformation of the hypergeometric

* series (Reference 26), i.e.,

a .
F(S-l, Arsel, Lemaes; C..c) 2 S:(m s)F(la-m\x‘ am-Ll femes; C:) (2-38)

Both of these hypergeometric series are valid when m +8 20 {is satisfied. It
follows from the definition of the hypergeometric series that the first two argu-

H ments can be interchanged as follows:

. + &
¥ F(lemal, m-2, Lemes; Qr) = F(m-L, Lemed, Lomas; QT) (2-39)

*
2 R = Bl M BN B0 =3
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In view of Equation (2-32),

S (L-m)! (mes)! mes, m-s
F(m-l, Lemel, Lemes; Q‘L’) = TRRY P‘_m ‘t) (2-40)

The constraints on the Jacobi polynomial are m +8 20 and m - s 20, which are
satisfied simultaneously by -m<s<m. In summary, the hypergeometric series

in Equation (2-27) can be expressed as

(2-m)! (mes)! a(m-s) _ . }
e Sar Paln) (mSs<m) @-dla)

a
F(s-2, L+ses, 1emes; 05 ) 2
( +5+l,1leMes t) (].$§‘.(M95’! MO’(-C’.‘)

(Lem)! Pres Mm<s<L)  (2-41b)

Substituting Equations (2-36) and (2-41) into Equations (2-27) and using the rela-

tion

asb n b,a—
P, (-x) = (-1) B ) (2=+2)
vields
( O O S P ACaq) (-1Ss<-m) (2-430)
ms em (Lem)! (1-m)! mes m.s M» mes
U,, (¥ -< (C3Y) ooyt (ot 7 5, P (C;,) (mSs<m) (2-43b)
S, Mo
\c, Sy P (Cag) mSsSL)  (2-430)

"“’\\1 "\(1 IN
L, l“\k(( “\
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]
—
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Substitution of this expression into Equation (2-26) vields the complete expres-

s
sion for the function S;;' (p+@,T) interms of the Jacobi polynomials, i.e.,

XY

Su = up:j [(m-s)(v-w/a)-(mu)p]{

med ~Me$ m-3 NO‘,.*’

(. t) < sf 48 cag) (~RSs€-m) (2-44a)
som (Lom)! (J-m)!  mes _mes _ms,mes .
O enr ey Ot St Pim  (Qy)  (mSssm) (@-ib)

MmesS 1M _-m, Mmes
Cx S¢ Py (Cap) (mgsgl)  (2-4i0)

2,1.2.3 The Function s,,“;'

Expressing Equations (2-44) explicitly in the Euler angles (A, w, i), which describe

® {n Terms of the Euler Angles

the rotation from the primed reference system to the unprimed reference system,

through Equatioas (2-16) yields

in.s. -im-3)3  .j(s0ema)
at e e

Me$ _“M-$ me9 ~0$’ .y

(1Y Ca Sia Pi. Q) (-2$s<-m) (2-450)

sem (Lem)l (Lem)l  mes s _m.s, mes
‘< 1) (es)t (2-9) Cira Sina Pl-n (¢, ((mSs<m) (2-45b)
Mes g.m M, med
\ c;[a 5;11 Pl-t (Q.) (im<sse) (2=45¢)
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2. 1.204 Svmmetry of the Function S".I.'

In view of the symmetry in Equation (2-43), {* i« possible to formally collapse the
definition of the Sfl’s function. Defining 6 = 1 for s X0 (&= -1for 820) and
using the relation given in Equation (2-42) vields the following expressions for

Equations (2-432) and (2-45¢):

. v . -
sj(m-€3)3  -i(mOedsfl) fem _seam 4-€m s-m,mes
3 ¢ ¢ ija sill P‘.‘ (ecl) (2-46)

for € =<1 and s >m.

Similarly, Equation (2-435b) is symmetric about s = 0 and can be expressed as

Aj(m-6a) T j(mue€sR)  sm fem (fom)t(f.m)! Meks_mees mosms

¢ ¢ €€ o (! Cua Sia Prm  (6C) @-4D)

for € =<1 and 0Ss<m,

The retation of a surtace harmonic fuaction given by Equ.:.ion (2-24) can then be

expressed as

J"'Vl (-es)! s _ jesd’
jm(sm(ﬂ Z 8§ = (1o Sa. PJ‘“(smd’)e. (2~48)

where € takes on the values 31,

[
‘ L 0 et

I Y $50

2-17
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and
s.m,s,e ‘j(m-es)fi -j(mw+€3Q)
a * ¢
2em M (o)t (f-m))  Me€S  M-ES  m-s,med -
e (-0 GraY (1oa)! Cia Sz Pim (¢¢;) (0<s<m) (2-50a)
X
se€M _3-Gm _%-m,Med
e!’m (‘.-,,?L Sia Ppe (eC) (m<s<y) (2-50b)

In view of Equation (2-25)

B (x) = € (L+es)!

hes T 620 @-5Y

Therefore, Equetion (2-48) can be simplified to read

L
‘ jma TESTELEX . jesk
pl,m(sm¢) e = Z 85 e TEY S"'u‘ P‘P‘s(b)(sm(ﬁ le (2-52)
530
for ¢ = ¥1, since
(1ees)! (R-e)l |
(Les)! = (-l (2-53)

Equations (2-50) and (2-52) are the recommended formulation for those cases where
the symmetry is easily taken advantage of. Otherwise, the formulation should be
developed using Equations (2-24) and (2-45).
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2.2 EXPANSIONS OF THE PRODUCT (/a)” ¢/%

Expansions of the form
r n jSL n.s 'tx
— - ! J -
( ~ ) e = E At e | (2-54)

(where r, &, and L are the radial distance, semimajor axis, and true longi-
tude, respectively, and X is the true (L), eccentric (F), or mean (A) longitude)
play a major role in the development in equinoctial elements of the disturbing
functions for the nonspherical gravitational and third-body perturbations. Con-
sequently, they are also important in the development of the analytically averaged
equations of motion and in the analytical development of the short-period varia-

tions in the osculating elements.

For certain cases, each longitude possesses a particular advantage as the expan-
sion variable, X. Specifically, for n<0, the above expansion is finite in terms
of the true longitude, and, for n 20, the expansion is finite in terms of the eccen-
tric longitude. While the expansion in the mean longitude i{s always infinite, it is
of considerable importance because of the simple relationship between the time

and mean longitude.

Similar expansiouns of the form
r " jsF ns  jEn
o/ © 2 L, ¢ (2=55)

(where f designates the true anomaly and x is the true (f), the eccentric (u), or
the mean (2) anomaly) plaved an important role in the development of the classi-
cal disturbing function of planetary theorv. These expansions were investigated

extensively by Hansen (Reference 27) and good, if less exhaustive, discussion

2-19
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can be found in Brown and Shook (Reference 28). A scmewhat more theoretical
discussion, based on Cauchy's first and second theorems, is given by Hagihara

(Reference 29).

2.2.1 Reduction to the Expansion of the Product (r/a,)“ eij

Hansen's results are directly applicable to the expansions in the longitude (Equa-

tion (2-54)). This is easily demonstrated using the relation between the equinoc-

tial longitudes and the corresponding classical anomalies

X= x+w+I0 (2-56)

In view of Equation (2-56), the left~hand side of Equation (2-54) can be expressed

as

noojs(w+I0) jef
) & ¢ (2-5T7)

G e™ -

ela

Substituting the expansion in Equation (2-55) yields

Inverting Equation (2-56) and substituting the result into the expansion in Equa-
tion (2-38) yields

r\" sk js(weQ) ns  jE(X-w-10)
(z) e a ¢ ().t (2

ns o jle-tllweIR) X
= Q’t e e
t

_\"_)n jstL js(w+In) ne  jtx
t

[

0= =y e Lo T T T

t (2=59) )
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A comparison of Equations (2-34) and (2-39) indicates that

A (et WeTA) g

¢ = & o, (2-60)

In view of the definition of the equinoctial elements h, k (Reference 5, Appendix A),

jwe IN)

~4 .
e * ¢ (keih) (2-61a)
and Swel)
e s« e (k-jh) (2=61b)
COINAL PaGe s
‘Therefore, S Poor g ALLIY
n,s t-3 . s-t n,S
Ay = e (keih) ay (2-623)
or ’ t t-3 '
ns s G- ne '
At u g (k-3\\3 Qy (2=-G2b) ﬁ )
‘ ~
and the applicability of Hansen's results ts demonstrated.
The explicit development of the Fourter series expansions of the form given {n
Equation (2-33) {8 preseated next.  Much of the discussion follows the approach
of Hansen but {s of much more limited scope. [ addition, some results obtained
by Hill and Newcomb, for expansions in the mean anomaly, will be presented.
2,2, 1,1 Expansion i{n the True Anomaly
The Fourier oxpansion of the form
(r‘)"e}sg v ns jtf * !
= a2 Q e (2=063) .
Q! lns t '
t :




A

is desired. More correctly, the coefficients in the expansion have only two
indexes since the Fourier expansion of the imaginary exponential function is

not required. If
ry\" jEf |
(I) : Z v, e! (2-64)
then
_r_)" jsf n o jkes)
(a. e = V, ¢ (2-65)

t

and it is sufficient to develop the expansion for (r/ a.)n (Equation (2-64)).

It follows from Fourier's Theorem (Reference 30) that

w

n 1 r\nN -Jk‘F
Vi = v (-&-) e df (2-66)
-7

This expression is obtained by multiplying e-jkf through Equation (2-64) and
integrating both sides appropriately. The resulting series collapses to a single
term, specifically, the term when t = k, in view of the orthogonality conditions
for Fourier series or, equivalently, the 27 periodicity of the imaginary expo-

nentiaf function,

Since r/a is a real function and since Equation (2-64) is also satisfied by the

complex conjugates of each side, it follows that
r\N n -itf
(Z) s V, & (2=67)
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A comparison of Equations (2-64) and (2-67) shows that

s e o e . e ———— ettt

— e o

n n
L V, = Vi (2-68)
|
j; An explicit reprusentation of the coefficient \'lt1 can be obtained by a brute-force
L
expansion of (r/a)" using the well-known relation
.‘l \\
g a
: r 1-e ORIGINAT, pag
| - 3 —— ; ‘YAGE I8 (2-69
] & Lvecwst  UFPook quappy ©7%
}
' Using Hansen's approach, the following definitions are made:
U
sing = e (2=10)
U it
LI (2=71)
U
[ Then,
! ij
v R
§ cos ¢ = i1-e (2=-72)
\ e
\ A = tan (¢/2) = (2-73)
i 1+41-e*
5 and Equation (2-69) can be expressed as
'J r 2 4, Ayt
i (L-4%) cos d (L+8X) (u- 'x_) 2-74)
1 j 2423
I s R S TTTTTTTTTI TR T b R T T A R R
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Therefore,

({)n = (1-8%)" eos"g (1+5x)-n(1+ —f)-n @-75)
(_;j)-n: (1-8 " "¢ (1ex)" (10 &) (2-76)

for n, a nonnegative integer. Hence, the expansions for (r/a,):t‘n reduces to the
expansions of the product

n 3
(1+Ax) (1+— %)m @2-77)

2,2,1, 1,1 Expansions of the product (1 ~!-px)"n (1 -!-(p/x)]-n

Using the Binomial Theorem yields the following result:

o

(-.L) (nek-1)1 Z (-l)m(mm-n‘ m -m
1 oY el g § el
( *’sx) (n-1)! k! e A ntmy S
kel ms0
(2-18)
(-] «©
kem (nak-1)! (nama)t  kem  kem
a -
Z Z 1) (n-L)! k! (n-4)! m! g X
ks) wmsd
If the following definitions are made:
t = K-m (2-79a)
p= kim (2-79b)
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i it follows that ~co<t<om, since 0Sk<m® and 0 Em< . To determine the
l é{ range of p, it {s necessary to invert Equations (2-79) to yield
'R , p-t
LS m= =——— >0 (2-80a)
’ L
h
kR p+t
k = 20 (2-80b)
IR +
T
R O
u Clearly, p2it| and p+t must be even; consequently, p is defined as
} .
Ll P= i+ |t (2-81)
U Then, if {t|<p< o, it follows that 0<1< 00 and
D
U ma= 2+ |t]-¢ (2-82a)
U ko= di+[t]«t (2-82b)
U, It also follows that Equation (2-78) can be expressed as
‘J ) ® o
J -n -n U (neltlsi-1)1 (neieg) 3ieltl
! -] - ZZ . neltlria0)! (neiag)) t 2.83
(1epX) (“ x) GO et Guen A A (2-83)
\ tee@ 00
L
Since
(neltlei-)t (naiat)! . {(neitlag) (Rettlar-1)t (neiat)l 14l
. -1} W) SR (neltl=1)! (neg)t (Hk1a)
(n=1)! (n-1)! (Ltlei) (n-1) (ne (2-84)

(neitl); (n),

. (vn \tl‘l)
¢l (1tle1);
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and
o0 a_
(n+ltl); (n); A a
e — ltl+d: 2=85
Lo Taety Fneltl, n, et £7) (@-59)
then

(Le8xY" 1+ )" Z(- ¥ '“ ""*"‘)F(mltl,n,ltm;p‘)x" 2-86)

ity
ta-®

2,2,1. 1.2 Expansion of the Product (1 +px)n[1 + (Ia/x)]n

A straightforward application of the Binomial Theorem yields

(1 +ﬁx) ZZ “ kmxk'm (2-87)

kRs0 mz0 ,

The quantities t, p, and i are defined as abow}e, with the exception that the
ranges in this case are -n<t<n, |t|<p<2n, and 0Si<(n- (1t1/2)] (where

[ ] denotes the integer part). Equation (2-87) can then be expressed as

n  [n-t1a)

(1+8X) (u——-)" . Z Z(.l:‘m)(?)pa'“m x* (2-88)

tzen 130

n
The definition of the binomial coefficient ( L+t ') is

(n ) n!
ieltl) T (netel-)! Gletel)!
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Also,

n!

(n-1t}-
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0 - (e-2) e (-t (n= el o (neltl- i)
n| i .
a (n_\tn! ('l) (ltl‘n)(‘tl"n&l)n. (‘t"n‘Li‘l)

which can be expressed using Pochhamer's symbol as

and

Therefore,

Similarly,

Finally,

n! n! i
- a - (-1) (itl- );
(n=1tl-i)! (n-1t1)! ) ( "

L L AT 1
(ielt) It (el ltlt (1tle )y
n v (lkl-n);

n .
(mt() T (- RDY LRI (leles);

n T S T B GO G )
(i) EETENE i ) i

<":‘“)(?) i (\:l) “(tl‘t.lt):):.ir:)‘

(2-90)

2-91)

(2-92)

(2-93)

(2-94)

(2-95)

‘.
v ra, e ¢ e

v . e
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Substituting this result into Equation (2-88) yields the result B
n t"\- ‘“‘1] ai
n a\" a\ ot SO Gten) (-n); B Lt
1+8A (1.1-—) = Z( ) : X 2-96
( g ) A it P Z_, (\t\ol’; il ( )
{s-n 120 B
which can be expressed in terms of the hypergeometric series a8 B
n
n n 13} 4
(1+5X) (1+ f) -Z(m) A F(ltl-n,-n, ARSI p’)x (2-97) U
Rs-n
}
U
The expansions for /o )tn in the true anomaly are obtained by substituting U

Equations (2-86) and (2-97) {nto Equations (2-75) and (2=76), respectively, which

vields U
({..) . (1) cos"d Z(. N “":“") E(nett, m ltle1; £XE 2-98) B ,
¢z ' I
]
n n '
N -n . 1t 2y ¢
('f::) = (1-8%) con $ Z(*:‘) g F(len,n, Itiet; B) X (2-99)
& f
Expressing these expansions explicitly in the true anomaly yields ﬂ ; "
o e l
n i
Z V; € (2-100a) q
$2-0 L
.
o
2 .
A
L
2-2%
4
WW""‘""‘“" s = S P ‘-.—_...L J J : !
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where® OOR QUALITY
n n 1kl it .
V= (L-8%) e8¢ (1) ("’:il\ ’“) F(neltl, n, ik1eL; A2)  (2-100b)
and
n n
) en jif
(i) = Z Ve e’ (2-101a)
tsn
where

-n - -
v, * (1-87) ncos"cﬁ (,'t‘k) ,am F(ltl-n,-n, ltle1; %) (2-101b)

2.2.1.2 Expansion in the Eccentric Anomaly

It is apparent that if (v/ a.)*“ and CJSf are expandible in a Fourier series in the

eccentric anomaly, u, {.e.,

r n n jku.
(E.) ‘_ Dk e (2-102)

jSF 'S jl'ﬂu,
e = Qm € (2-103)
m

1Although this expression is not of closed form, it is easily iransformed to a
closed-form expression using the linear transformation (Reference 26)

¢-a-b
F(a,b,¢,x3) = (1-x3) F(e-a, c-b, ¢, ad)

whkich yields the result

n -(n
N, = (189

13
tos"¢ (-8) " F(1-n, ltl-net, ltlat; 8%)
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Then

tn of (hem)w
e T T e -

or, equivaleatly,

(L)“ jsf s jtu
o/ ¢ = W, 2-106)
t
where
t LR " s "
We Z Piim e C-108
m

Hence, the coefficients \Vf n,s can be determined trom the coeffictents of the

simpler expansions in Equatioas (2-102) and (2-103).

Another expression for the coefficients \V:n's i{s provided by multiplving Equa-

tion (2-105) by c-jku and {ntegrating over -TSu<g:r, which vields

1 r m j(S‘F - ku) s 4 . ({.k)
I . S st [,
Ir j(a‘) e duw W, n e du

o : -107)

!, s
* Zwt Sew = Wi
t

In addition, the symmetry condition
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follows, as before, by substituting the complex conjugates in Equation (2-107)

and comparing the results with those given in Equation (2-107).

An explicit representation of the coefficients is developed next. This represen-

tation is obtained directly by expanding the left-hand side of Equation (2-105)

(rather than by using the expansions given by Equations (2-102) and (2-103) and

then constructing the coefficients throug!. Equation (2-106)). The expansions in

Equations (2-102) and (2-103) are also obtained, since they are special cases of

Equation (2-103).

Again, following Hansen's method, the definitions are made

ORIGINAL PAGE IS
').‘ ), A1y .
Siuce O POCR QUALITY

3 { -~ eosu

Pl

it is easily verified that

Z ox (1083 (1483 BlyeyD)] (1**”).1“‘/‘33)(" 5)

aud

‘e g (1-8y)
(L-8y)
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(2-109)

(2-110)

@-111)

(2-112)
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It follows from Equations (2-111) and (2-112) that

——
| =
~—————
3
\_‘—“-
."
[
—
el
p.3
w
n

(1-:-,6“)."35 (i-ﬁy)n.s (1~,53"')ms (2-113)

. N isf ryN nos -n-s IR y
| (—) e = (—) = (106" y° (1-8y) (1-myt) (2-114)
QO o
z 1 :
1 g
o where n is a nonnegative integer. For the purposes of this investigation, the { b
relation n2|s| is always satisfied; hence, n-s 20 and n+s 20, and -n-s<0 J i
, and s-n<0. {7
O z
L b - +. w9
g 2.2.1.2.1 Expansion of the Product (1-py)" > (1-fy~1H"™
i
: Since n2|s|, the Binomial Theorem yields the expansion {.’} t
; |
W
‘ ,
!

e
o e

n+S

(1-8)" " (1-8y")

n-5 n+d

s
e
~—

" [}
[>]e &l |
-3
=
’)Ig ) e
o —
N —— 3
3
—— [
IU S e
1+
Pl & w
g K¢
,‘\ Vx
-+
> 3
b o]
e
"+ v
3
| & vennasty
s [ QY

(2-115)

ga-son psitl

L—-

>
-

e (ptt even)
t §
".' n n-itsl/d J E
3] n-s n+s Baltesl 4o 4
= 0 . , A Y
P+ (1e-alet-a)/2 / \ i+ [it=sl-(t-0]/2 r
. tan 100 S
: B
1t 1
; lt-s|+t-s !
i o &2 —— (2-116a) g
|
i
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and
[t-s]-(t-9)
i

then {t follows from Equation (2-93) that

- i (a-n+s);
(:8) = () e’ S0

(x+4);
and
n+S Nea i (P-n-s);
: = (-1) ————
("p) (P ) ) (e+1);
Therefore,
(n-s )(p+s) i (n-s)(ms) (x-n+s); (0-n-8);
1+ t+0 - « R (ltlf'l)“ i\
since
(“*1); (,01-1); a (\t\+1); (1),
and

(¢) = it

{ s
(2-116b)

(2-117)

(2-118)

(2-119)

(2-120)

(2-121)




Substituting Equation (2-119) into Equation (2-115) and expressing the result in

!
.\ terms of the hypergeometric series yvields

2

I1t-s] n-9% n+S ‘

(t- ﬁi) (-1) (ushts)(giiilgg,e )
tam (2-122) i}
[t-slet-s it-s-(t-s) 1) t-s A
) F(——-a-.t——-nQ-S, -——a—.——-n-s, lt-s]ol;p)t} i}
Ty
td
-n-s s-n =

2.2.1,2.2 Expansion of the Product (1-8y)  ~ (1-By~1)
Since n2|{s|, it follows that l.

L) ) .
-N-5 - 1 . - k e
(1. 69) (l 8(5'1 Z Z (nes+k-1)! (n-sem-1)! ‘s*m%u.m 2-123)

(nse-)ik! (n-a-1)!'wm!
k=0 wms{

it

which can be expressed as

o o
~n=5% 5N (n#S-v'l#G(-l)! (“‘5""?‘!0'-”2 disit) %-5
- - -1 = 2“‘1
(1 /3!5) (4 o« ) ZZ (nas-1) (Gl (n-s-10)! ({ep)! # E

t1e0 a0

where & and P retain the definitions given in Equations (2-116). Also,

£ KR =3 D =

(nessisa-1)! - (nesea-1)! o) (nssvra+i=)}

(n+s-1)} (nes-1)! ! (nes+a-L)!
@-125)

ey
L

U .

(m-eu-ct-i

« )al‘ {(nes+a);
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c= o=

t— =

———
h.a-—-r—-‘

-l eam e =

and, similarly

(n-s-rifp-l)‘. (V\‘Sfp‘l
a2

' (n-s+p); 2-126
27T neses 126

(n-8-1)

Substituting Equations (2-125) and (2-126) into (2-124) yields
[ -]

-n-% SN (msw(-x) (n-s+p-1)
(1-84) “(1-gy") = Z « o
tz2-0
(2-127)
> -]
< Z (nesea)i (n-8+0) ﬁl'n-lt-s\ L-s
(a+1); (PaL); e
in0
Again, it follows from the definitions of & and P that
(x+1), (pe1), = (1t-si Q; il (2-128)
Thus, Equation (2-127) admits the hypergeometric series representation
“W-% <l -
(1-8y)  (L-gg’) =
= \
nes-t-———-——lt"‘*t"’ -4 n-s+ ASLTRGSLN A 1
. : @2-129)
1t-slet -9 -sl-teow)
t2-c0 L ?
. F(msq- sl (on) o eal-lb0) lt_s,.“{aa) gt
Substituting Equations (2-122) and (2-129) into Equations 2-113) and 2-114),
respectively, yvields the desired expansions
n
r\? JeF ns jtu
(Z) e W, e (2-1302)
tien
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where
ns -n lt‘ﬁl nN-5%5 n+%
a -
Wt = (1+8%) (-1) {t-s{+rt-s )| 1£-5]- (t-8) ,e‘”l
a 2
(2-130b)
jt-sl+t-s lt-s]-(t-s)
X F(-—-{——- -n+s, —’—'ai-—s---n-s, lt-slety ,éa)
and
o
PN ef -ns  jtw
(E) e!* = Zwt e (2-131a)
tz-
wherel
w’"’s ( :)n n+s¢-'t'°1‘*t’5-i n-s+lt"‘;“"')~x s ]
= (1
3 "“[3 \t-slek-g [£-s]-(t-s)
a &
(2-131b)

X F(n*SQ--—-—-—-—'t-s’{*‘b, n-s+ ___)lt-sl;.(t-s 5 lt-slet; ﬁl)

IA closed-form expression can be obtained by a linear transformation (see
Equation (2-101b) and the accompanying footnote) which yields the expression

ns =(n-1) ﬂfs#mj-%ti).l n-se Boslo o) 4\
Wt = (1-8%) cos ¢ 2
JL-814s (t-8) -8~ (£-9)
'S &

x F (1-n~s+ -—-—-—-‘t-sli(t.s) . 1.-nr5+-—-\-——‘£'s i(t's) ) Iteslet s ,Ba)
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2.2.1.3 Expansion in the Mean Anomaly

The Fourier expansion in the mean anomaly takes the form
r)" jsf e jtL
@ e = L © (2-132)
t

It is clear from the discussion in Sections 2.2.1.1 and 2.2. 1.2 that the coefficients

th’ S , referred to as Hansen's coefficlents, can be expressed as

Xn,s 1 7 " j(sF-ke) i
2 — —) & 2~
k aw (a,) (2-133)
-
and also that the symmetry relation
ns n,s
Xe = X 2-134)

holds,

The above expansion has played a central role in the development of the classical
planetary theories because of the desire for explicit time-dependent theories and ’
because of the simple relationship betweeun the mean anomaly and the time.
Accordingly, this expansion and similar ones have been studied by a host of

investigators. 1

There are several approaches which can be taken to develop an explicit repre-
sentation for the Hansen coefficients. For example, the Hansen coeffictents can

be expressed in terms of either of the previously derived coefficients, Vtin or

1I.;everrter (Reference 31) and Cayley (Reference 32) developed extensive tables
for the expansions through the seventh power of the eccentricity.
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w *n, The V, representation is obtained from the Fourier expansion (Equa-

t t
( Z V‘l N e (2-135)

tion (2-63))
and a variation of the equation of the center (Reference 1)

©
j%({' l) % jtd

t-t
tz-00 %

(2-136)

Substituting Equation (2-136) into Equation (2-135) and rearranging the summa-

e O n 18
(&) e = V%_s C.E e (2-137)

ts.0 %

tion yields

Comparison of this result with Equations (2-132) vields the relation

tns
X, =Z v;_s e} (2-138)
%

Similarly, the Hansen coefficients can also be expressed in terms of the coeffi-
cient Wt'ﬁn’ . The resulting expression of the Hansen coefficients has sometimes
been referred to as Hill's formulation of the Hansen coefficients (Reference 33).
However, this expression was given by Hansen (Reference 27) some 20 years

before Hill.

In addition to Hill's formulation of the Hansen coefficients, some of the repre-

sentations obtained by Hansen and by Newcomb and Poincare will be presented.
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2.2.1.3.1 Hill's Representation for th’ S

Hill (Reference 33) developed a representation of the form

b SN P!
r’ﬁa‘-
.
.

U ns n‘s
Xy = Tolte) Xep (2-139)
P j
- u §
X where the function th’ps is, to within a factor, a hypergeometric series, and
i ‘ ’ !
Ll where 0 . lie s ﬁ
: 1) (x/2) |
INEY Jo(x) = Z : (2-140a)
. L (s+i)! ! %
) ; 1=l :
i i
) s i
; U J.= (0 LK) (2-140b) L
¢ a
t U is the Bessel function of the first kind (Reference 30).
é‘ . This same form can be easily constructed using Equations (2-130) and (2-131), ‘
K U f.e.,
f '
. yn . . H
ey st tns jru
U (E) e = Z W. e (2-141)
[ r
and the expansion1

1r Wwe ’
el a Z B, &’ (2-142)

——
—~ o

1'I‘his expansion {s of major importance in the expansion of the classical disturb-
ing function (Reference 1). v
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where

1 for r=0

r
Bo = -efa for Irl =1 (2-143)
0 for Ir]>1
and where
r r ( )
B, = T J..lte (t #0) (2-144)

Substituting Equation (2-142) into Equation (2-141) vields
m .
r\" jsf s _r  GtL
HICEDRRLE
t r
and a comparison of Equations (2-132) and (2-145) gives the relation

tns TS
Xt = W, B, (2-146)

The range of r {s -nsr<n for n20, ~-osSrso for n<0 and -1<r<1 for
t=0.

- )
The \\"t S oefficlents were shown in Section 2.2, 1.2 to be proportional to the
hypergeometric series; consequently, it is clear that Equations (2-139) and (2-146)

are of the same general form,
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2,2.1,3,2 Hansen's Representation for ‘\t 'S

Another approach to the explicit development of Hansen's coefficients is to expand
the integrand {n Equatfon (2-133). Clearly, only the constant term {n the expan-

sion will remain after the definite integral is evaluated. Defining

it B,
X =& (-1470)
3w o
y=e (2-147b)
L
2 =8 (2-147¢)
and substituting the relation
ds
= csmem i
di = e (2-148)
{nto Equation (2-133) vields the contour integral
ns L r)" s k-l
2 — -] X dz 2-149
N~ (=) *« (2-149)

)

where the contour ¢ is the unit circle |z} =1.

Expansion of the integrand in Equation (2-149) {n powers of z will yield the results

presented earlier in this section. However, the definite integral formulation is

quite flexible in that the {antegration varfable can be transformed to either x or y

via the relations

&

r 2z

de =
atcos¢p x

dx (2-150)

3

dz = -E_- _‘; dy 2-151)

. ——n e
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which follow from the well-known rclations

2

r=df
al = m (2-152)
ds = -5':- dw (2-153)

Substituting Equation (2-150) into Equation (2-149) vields the contour integral
ns i r ned e-1 -k
X = —— (—) X & dx 2-154
k = amj cos@ f o (2-154
¢

where the contour c¢ is defined by (x| =1.

Making the substitutions

-1
-& . (11 8&) (L+8x) (u-f) (2-155)
~(e/2)(y-y™)
1= ye (2-156)
1
. y = x %’%‘;— (2-157)
1-p*
cos = et (2-158)
yields s
8 L (1-89) " ;-k. anek-d
X, = _ - ~§x) ir,ﬁx)
kTam (Legd)™t (2-159)
¢ { S e ) d
1 AP /u"'s(n-px 1+ﬁx"} X
242

—

1 M *

e~

P . e Py
[N

iy} 1

{

=
; AP XA <y

e B .

=

=

P

¢ -
‘
e -

-~
[

-
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where
M= keos (2-160)

Grouping factors {n the integrand, developing expansions for each group, and then
multiplying all constituent expansions together vields the final expansion for the
integrand in Equation (2-149). The form of the final expansion depends on how
the factors are grouped. Clearly, the product

-neked 8 “n-k-Q
(1+8x) (L*;)

will yvield a hypergeometric series representation as shown in Section 2.2, 1, ©

-e o LT

Hans~n considers the factors

“N-k-Q

-1
. Nk - X
el el ] (2] (228 e

The expansion for the exponential function vield

)

-~ m -t

“p{_ﬁ_/« a } a > JILY (lr,&x)n (2- 162)
1+ 8x m!

ms)

and, therefore,

)
L oonek-d M8 (’AL,S:OM “nekem- e
(1+3x) exn{;jﬁ—x} = Z o (1+8x) (2-183)

msz{
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It follows from the Binomial Theorem that

LS -1 = |
(1*/5,()1 m Z (_1)1(n-km+1.1-1). ( ,Gx)j' 2168

(n-kemei)l L!
120

Substituting Equation (2-164) iato Equatiot (2-163) vields the result

0 0
-nek-2 mel (N-KemMelel)!
(1+8x) exp (-0 Ax) T (2-165)
1.+ﬂx m‘ (n-kems )} L1
ma0 L0

If the following definition is made,

p=ms+l

then the left-hand side of Equation (2-165) becomes

o P
wked [ p m _ (n-kepedt 4™ P ]
(1+8x) exp{h xz a Z(-ﬂ Z(-x) e Dt (o o1 (Bx) (2-166)
p=0 m=0
‘Thus,
~Neked
(hﬁx) expi } Y(n Mp(ﬁx) (2-167a)
e
where
m (n-keped) um ,
- - 2-167b
MP: i( 4 (nekemsd)! (p-m)i m! ( )
med
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The expansion of the product

! PRIRN

| “N-X-3 Y-

U { L+ 3x XO{-/L—LE——.”

\ T' ) el 1'#’3A"J‘

€
| J—

i{s obtained by substituting -k for k, -u for ¢, and x~! for x in Equation (2-166).

——

o

The result is )

[+

-

-n-k-2 (L, 8xt .

(. (1e85t) cxp{%%ﬁ} 2 Z(-Q% N%p%x 1 (2-1682)
L, 4110
i P
.’ where
i

! m

) (nﬁntﬂwi)! (1-m)' m:
U Ma{
U The product of Equations (2-167a) aand (2-167b) vields the result /
U ~vex-1 -n-k-2 X <L

) -t (—__ - __.)
U (lﬂdx, (1+3x ) exp {/u.ls Todx 1o |
(2-169) 1
© ©
FO P. p-
i . ZZ(-n Tigng 873845
E ped q9
B If the {ollowing deflnitioné are made
ta= p°O° \\
i £+ pog
then ~-oSt<o .

u ,'45
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Since
LA
P==2
0= r-t
> A&

it follows that r £t must be even and r21(t| . Hence, r is defined as follows:

r= 2+t

the right-hand side of Equation (2-169) takes the form

o0 ao
it} ai ¢
Z ('/5) Z M'n-(ltlvh)/& Ni+(ltl-t)11 g x (2-170)

t=-c0 =0

-k

Multiplying this result by x° -1 yields the expansion of the integrand in Equa-

tion (2~159). Tquation (2-159) then takes the form

ane3 s
KL (1-8%) [ Z(mltl

K = 2'-”.‘ 2\N+L B

J (1+p%) . =
(2-171)
0
AU tes-k-L
X ZMM&M)IQ. NicQe-tya B % dx

=0

Evaluating this integral reduces to evaluating the integral

‘/'Xt‘-s-k-tdx 2-172)

¢
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Clearly,

) tes-k-i : . akel=-
U f" +9 dx = :lm for t+s~k-1 1 (2-173)

. 0 for t+s-k-1#-1
f\ ¢

from the theory of integration in complex variables or, equivalently, from Cauchy's

i U Residue Theorem (Reference 30).
Vi In view of Equation (2~173), the expression for the Hansen coefficient in Equation
o (2-171) reduces to i
/)
= dn+3
) .
n,s (1- -g7) ) ]n s| ) ai
Vo XK = (1. ﬁl)ml u-(l‘ -slek-3)/d N H[lk-sl-&-b)ﬂlp (2-174)
" 120 .
"l where the ccefficients M and N are defined by Equations (2-167b) and (2-168b), !
! d respectively, “
| .
; -
v

Hansen obtained another expression for the Hansen coefficients by substituting

sy

Equation (2-151) into Equation (2-149) and using the relations

—— -
. —

r -1
T = 18 (189 (1) -175)
L (1-8y™Y)
X =y si0RY / (2~176)

(1-8y)

and Equation (2-156) to obtain the expression

1
£
! ot o pp (1+/5‘)f Spyy (L-S)MM ‘otﬁf W"’} dy e
' .
i
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Using the decomposition

where
v h"ﬁ& (2-179)

Hansen develops expansions for the factors

n-s+l _y(1-8y)
(L~,@Lﬁ) e A
and

n+3-4 ﬂ(l'ﬂg-x)

(1-8y™) " e

Substituting the expaunsions for tiiese factors into Equation (2-177) and evaluating

the result vields the expression

[+ 4]
ns -n-1 (k-1 2
X, = (1+8%)  (-8) }: G likesivkes)/a Nisfikesi- (ko] ja B 2-180)
10
where
= )
- L n-s‘lu) V-
Gp = Z(-D ( o 0 (2-181a)
£=20
0
nestdal U_"
qu' q X (2-181b)
220
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[t is interesting to note that
G, = e (2-~1822)

Hp = e (2-182b)

Hansen provided other representation for the Hansen coefficients which can be

found i{n Reference 27.
2.2.1.3.3 The Newcomb-Poincare Formulation of th,s

Newcomb (Reference 34) applied an operator approach to the problem of the ex-
pansion of the classical disturbing function. This operator development relies
on certain differential operators to produce an expansion in the eccentricity.

The resulting development is analagous to that obtained by using analytical ex-
pressions for the Hansen coefficients and, consequently, provides another repre-

sentat{ion for the Hansen coefficients.

In essence, the Newcomb operator method produces a power series in the square
of the eccentricity, where the Newcomb operators are the coefficients. Evalua-
tion of the Newcomb operators vields pure rational nambers. In addition, these

coeffictents can be evaluated recursively using the recr  ~uce relations that exist

for the Newcomb operators.

A complete discussion of the Newcomb operators would require an in-depth dis-
cussion .f the operator approach to the expansion of the classical disturbing
function; this discussion i{s beyond the scope of this section. However, in addi-
tion to Newcomb's original work, the method is discussed and simplified by
Poincare (Reference 35). Other treatments of the subject can be found in Refer-

ences 1, 2, 29, and 36.
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For the purpose of describing the Hansen coefficients in terms of the Newcomh

operators, the following result given by Poincare (Reference 35) is considered: 'v

|

|

t ©0 ) [(
A r\" js(f-2) Am+lql am+lql  jql .
) 1 (E) (4 = TT% (nis)e é (2-183)

qs-ao m=0

.—‘-—».
[

m+{q|

where the Newcomb operator Tqu

[

emned

(n|s) is a polynomial in n and s. Compar-

ison of Poincare's result to a variation of the series of Hansen in Equation (2-132),

i 1 if.e., t{
g | (E)  js-0 ZX‘N 4 (2-184) 1
2=-0 .-
i % 3
v ",' vields the relation ki
= ~ )
Z am-r.ql )eanw\%l 2-185) ;ﬂﬁ
ms0

thus relating the Hansen coefficients to the Newcomb operators.

The remainder of this discussion follows closely that of Iszak, et al. (Reference 36).

Inspection of Equation (2-183) indicates that it can be expressed as

Co = s =2 <0

. - -]
‘I x nls +3 -Q
1 ; Z Xpo € 2° (2-186)
1 £=0 oa
- !
e where |
- Igl«-ﬂ “ i |
= m+ 2-187 T
P Y ( ) o
A
! L)
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T = m+ 4i-q (2-188)
R
xn,s Tr:mdql( N
oo 3 nis (2-189)

and x and z are defined by Equations (2-147),

It follows from the definitions of p and ¢ that

ns
Koo = Thg (nls) (2-190)
and
am+lql ns
1T, (nls) = X (2-191)

1

ma(1q1eQ)/2, me (191-9)/2

According to Iszak, the change in the indexes from q,m to p,c simplifies the
development of Von Zeipel's recurrence relations (Reference 37) for the Newcomb
operators. These recurrence relations follow from the partial differential equa-

tion of Von Zeipel which is derived in Appendix A and is given by

Xk e XM
(1-e?)e 2 r (1-e%) & —
de fo}
(2~192)
L d
2 ‘(k [l- (l-ea)all] + (k=-n) % + (2k-n)ex + (k-n) %- * %
where
nKk . r " X k

XK' = (I) (?) (2-193)
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) J (JORL SN AR UG AN JUURN: BRI IO O L . : L esmmscd ameli. o e el
) L
i !
P Eliminating the explicit appearance of x in Equation (2-192) through the substi- !
’ tution H :
W X
\ | <= (3)
% | {
) (b
! and developing the resulting equation into a power series in e yields the partial U ;
¥ differential equation |
o d o ) nk n kel
3 ‘ 1 1
' — e R e = -
i( Fvs 32 )X 2 (2k-n)ezX '
, {
4
2, ke o nk
+ (k-n) er e X T, e? [(4k-n)+ de — + 3z — ]X (2-195)
de oz
é Z(a/a) X 1'( 3 ) nk
T2
y 1
! f Substituting' Equation (2-186) into Equation (2-195) and comparing similar terms
vields the recurrence relation
ak nked n ks ﬂ
4PXy e = 2(ak-n)X oo+ (k)X g o o
| e J
+ (5p-0-4 +4k-n)xp_1,°._1 (2-196) ﬂ
) - 3/ nk E
1(p-a+k) Z(-l) ( - )Xp_z_) ot
T2 8
The subscripts in this relation are restricted to nonnegative integers. ‘ 1
|
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Another recurrence relation can be obtained from Egquation (2-196) by interchang-

ing the subscripts, changing k to -k, and using the symmetry relation

n,-k n,+K
pr ch_”0 (2-197)

which follows from the symmetry relation for the Hansen coefficients (Equation

(2-134)), The result is

nk n, k-3
40X, 5 = -l(lkm)ch_ (kem)Xg .2
- (p- 5'<:'+4+41<+n))(p 10-1 (2-198)

11 nk
+ 2(p- <r+k)Z() ’ szc-c

Finally, a third recurrence relation can be obtained by summing Equations (2-196)

and (2-198) to vield

nk n k-4
4pra) X, o = a(2k- n)Xp p o = A(Aken)X g 5y
n ked n k-2
+ <k-n)xp_a,¢ = (ken)X 5 o0oa (2-199)
nk

+ L(ap+ ;20--4-»1))(9_1,6_1

thus eliminating the summation over T.
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Initialization for the recurrence relation is provided by

nk
X 00 = { (2-200)

and the fact that quantities with negative subscripts are treated as identically zero.

Consequently,
nk K n
X 10 - 3: 2-201)
nk KD
XO’L = k=3 (2-202)

etc., are easily obtained.

Although the Newcomb operators are rational numbers, the problem of generating

them can be reduced to integer arithmetic by using the polynomials (Reference 36)

hk pre n.k
Joo = & piol )(/o'cr (2-203)

and the corresponding recurrence relations

nk nk+l nked
Joo = (ak-n) 3’ o+ (e 1) k-n) yp-Q‘D (2-204)
k k-1 k a
T,:c = - (2k+n) 7T P°" (0'-1)(k+n)
nk
- ,o((o-50-+4+4k+ n) Jp-i,c’-l (2-205)

+ /O(Io c“l‘k)z oo\ T p-'C o-7

T22
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. where
I
U
(p-1)  (o-1)}
: Chgr © el (g-4) Cr (2-206)
. I g P9 (p-z) (T-TH
, j
by and where
v
, T [s/2) _27-1
,l‘ . Cr = (-1) (,C ) 2 (2-207)
’ 4‘
ol
4 ‘ ; i 2.2.1,3.4 The Hansen Coefficient I\’;’s - A Special Case
NNy
s Ly i The Hansen coefficient Xg +S is of major importance in the development of the
[
o ! averaged equations of motion (in the absence of resonance phenomena), which
i"‘f | are presented in Sections 3 and 4 of this document. Because of this importance
1
\ z} and because it possesses a characteristic distinct from all other Hansen coeffi-
il ! Z cients Xf’s (k # 0), it is singled out for a special discussion.
1A
'l» L This particular Hansen coefficient is the constant term in the Fourier expansion,
] in the mean anomaly, of the product
1w r )n isp
3 (o.
. It possesses a finite hypergeometric series representation in either of the argu-
; ‘ ments 82 or e2 , contrary to the general Hansen coefficients which have infinite
L
series representations. These finite representations can be obtained through a
\ { brute-force expansion of the integrand of the expression
n,s i L jst
= — - =208
X a7 (a.) e dl (2-208)

-

the special case of Equation (2-133) where k =0, However, this development

{s unnecessary since almost 11l of the work has already been performed in
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Sections 2.2,1,1 and 2,2.1,2, More specifically, since

r2af

i =
2> cos P

and

r
dﬂ.‘-‘- Edu'

it then follows that changing the integration variable in Equation (2-208) yields

xn‘s 1 7 r ned Jst{:
= —————— L 2, 2'209
0 am c03¢ (O,) ~ ( )
-7
and
T A
ns 1 pyntd jof
T em—— — =210
X, = ( a.) e du (2-21